

4-DOF Multifunction Robotic Arm for Desktopr

1. Key Properties

4 Degree of Freedom 350mm Working Radius 200g Playload 1080P HD USB Camera Electric gripper ROS Framework Input Voltage 12V DC

2. Features

Lightweight design	Small size, light weight, portable and easy to install.
ROS Framework	Using the ROS framework, it is easy for secondary development.
Image recognition	Object sorting, Color recognition, Shape recognition, Face following
Teaching Function	The user manually pushes and pulls to move the robotic arm while
	recording the motion trajectory.
Voice Control	Built-in voice recognition module, use voice control switching function.
Plug-in Design	Quick release structure design, Quickly replace terminal devices for
	different application scenarios.

3. Specifications

Technical Specifications		
Weight	3 kg	
Vertical Workspace	300 mm	
Horizontal Workspace	300 mm	
Working Voltage	12V DC	
Voltage Display	0.4 inch red 7 Segment	
Maximum Working Radius	350 mm	
Playload	200 g	

Robotic Arm Axis Specifications		
Axis-1	±180°	
Axis-2	±120°	
Axis-3	±130°	
Axis-4	±180°	
Gripper	0° ~ 165°	

Hardware Structure Specifications		
Structure Type	Series	
Number of Axes	4 (not including end device)	
Controller	Industrial Computer	
Body Shell Material	Aluminum Alloy	
Installation Method	Desktop	
Motor	Serial Digital Servo	

Industrial Computer Specifications		
CPU	I3 4020Y	
Architecture	x86	
RAM	4GB	
ROM	60GB SSD	
Working Voltage	12V DC	
Display	HDMI	
Dimension	110mm x 90mm x 35mm	
System	Ubuntu 16.04	
	ROS Framework Support	
Programming Language	C / C++ / Python	
Communication Interface	USB(UART) · Ethernet (SSH)	

4. Dimensions

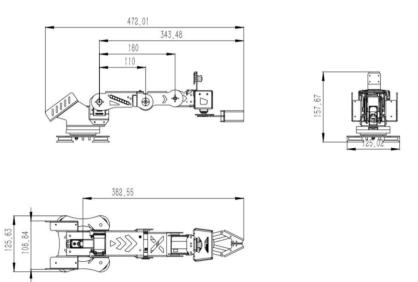


Figure 1 Horizontal Dimensions of Robotic Arm

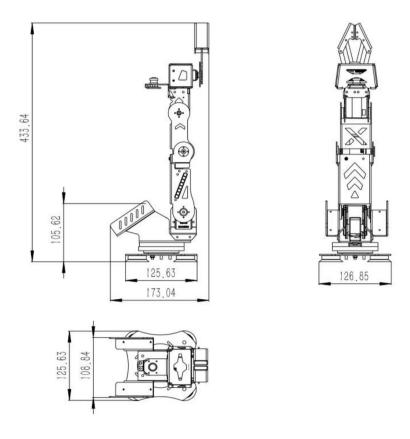


Figure 2 Vertical Dimensions of Robotic Arm

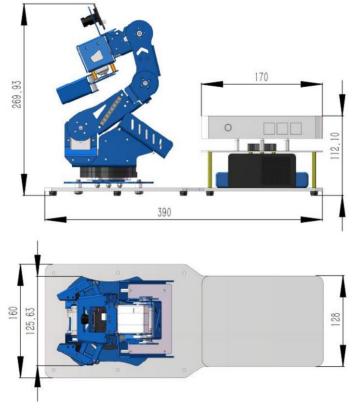
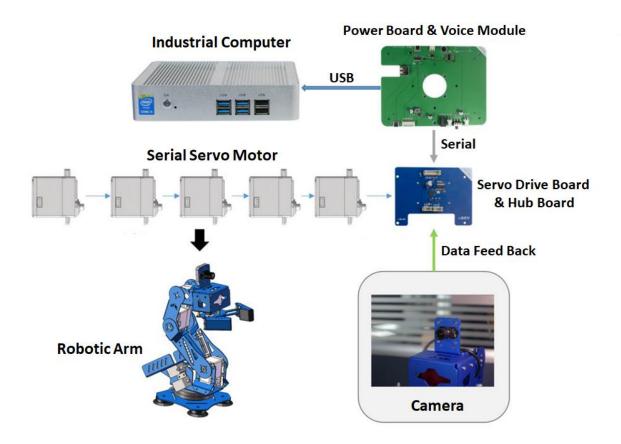


Figure 3 Overall Dimensions



5. System Structure

The industrial computer equipped with Ubuntu 16.04 operating system and ROS framework. The system uses inverse kinematics to calculate control commands, and then sends to serial servo motor to drive the robotic arm.

The industrial computer can also get the image return from camera, use image data to recognition or calculate the target position.

The robotic arm is also equipped with a voice control module. User can coding the secondary development program integrated in the system, so that the corresponding function can be called through the voice module.

